2,075 research outputs found

    An Extended Multireference Study of the Electronic States of Para-benzyne

    Get PDF
    A state-averaged, multireference complete active space (CAS) approach was used for the determination of the vertical excitation energies of valence and Rydberg states of para-benzyne. Orbitals were generated with a 10- and 32-state averaged multiconfigurational self-consistent field approach. Electron correlation was included using multireference configuration interaction with singles and doubles, including the Pople correction for size extensivity, multireference averaged quadratic coupled cluster (MR-AQCC) and MR-AQCC based on linear response theory. There is a very high density of electronic states in this diradical system—there are more than 17 states within 7 eV of the ground state including two 3s Rydberg states. All excitations, except 2 1Ag. are from the π system to the δδ*system. Of the 32 states characterized, 15 were multiconfigurational, including the ground 1Ag state, providing further evidence for the necessity of a multireference approach for p-benzyne. The vertical singlet-triplet splitting was also characterized using a two-state averaged approach. A CAS (2,2) calculation was shown to be inadequate due to interaction with the π orbitals

    Rotavirus NSP4 is secreted from infected cells as an oligomeric lipoprotein and binds to glycosaminoglycans on the surface of non-infected cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nonstructural glycoprotein 4 (NSP4) encoded by rotavirus is the only viral protein currently believed to function as an enterotoxin. NSP4 is synthesized as an intracellular transmembrane glycoprotein and as such is essential for virus assembly. Infection of polarized Caco-2 cells with rotavirus also results in the secretion of glycosylated NSP4 apparently in a soluble form despite retention of its transmembrane domain. We have examined the structure, solubility and cell-binding properties of this secreted form of NSP4 to further understand the biochemical basis for its enterotoxic function. We show here that NSP4 is secreted as discrete detergent-sensitive oligomers in a complex with phospholipids and demonstrate that this secreted form of NSP4 can bind to glycosaminoglycans present on the surface of a range of different cell types.</p> <p>Methods</p> <p>NSP4 was purified from the medium of infected cells after ultracentrifugation and ultrafiltration by successive lectin-affinity and ion exchange chromatography. Oligomerisation of NSP4 was examined by density gradient centrifugation and chemical crosslinking and the lipid content was assessed by analytical thin layer chromatography and flame ionization detection. Binding of NSP4 to various cell lines was measured using a flow cytometric-based assay.</p> <p>Results</p> <p>Secreted NSP4 formed oligomers that contained phospholipid but dissociated to a dimeric species in the presence of non-ionic detergent. The purified glycoprotein binds to the surface of various non-infected cells of distinct lineage. Binding of NSP4 to HT-29, a cell line of intestinal origin, is saturable and independent of divalent cations. Complementary biochemical approaches reveal that NSP4 binds to sulfated glycosaminoglycans on the plasma membrane.</p> <p>Conclusion</p> <p>Our study is the first to analyze an authentic (i.e. non-recombinant) form of NSP4 that is secreted from virus-infected cells. Despite retention of the transmembrane domain, secreted NSP4 remains soluble in an aqueous environment as an oligomeric lipoprotein that can bind to various cell types via an interaction with glycosaminoglycans. This broad cellular tropism exhibited by NSP4 may have implications for the pathophysiology of rotavirus disease.</p

    Exceptional aggressiveness of cerebral cavernous malformation disease associated with PDCD10 mutations.

    Get PDF
    PurposeThe phenotypic manifestations of cerebral cavernous malformation disease caused by rare PDCD10 mutations have not been systematically examined, and a mechanistic link to Rho kinase-mediated hyperpermeability, a potential therapeutic target, has not been established.MethodsWe analyzed PDCD10 small interfering RNA-treated endothelial cells for stress fibers, Rho kinase activity, and permeability. Rho kinase activity was assessed in cerebral cavernous malformation lesions. Brain permeability and cerebral cavernous malformation lesion burden were quantified, and clinical manifestations were assessed in prospectively enrolled subjects with PDCD10 mutations.ResultsWe determined that PDCD10 protein suppresses endothelial stress fibers, Rho kinase activity, and permeability in vitro. Pdcd10 heterozygous mice have greater lesion burden than other Ccm genotypes. We demonstrated robust Rho kinase activity in murine and human cerebral cavernous malformation vasculature and increased brain vascular permeability in humans with PDCD10 mutation. Clinical phenotype is exceptionally aggressive compared with the more common KRIT1 and CCM2 familial and sporadic cerebral cavernous malformation, with greater lesion burden and more frequent hemorrhages earlier in life. We first report other phenotypic features, including scoliosis, cognitive disability, and skin lesions, unrelated to lesion burden or bleeding.ConclusionThese findings define a unique cerebral cavernous malformation disease with exceptional aggressiveness, and they inform preclinical therapeutic testing, clinical counseling, and the design of trials.Genet Med 17 3, 188-196

    Transforming growth factor-β suppresses metastasis in a subset of human colon carcinoma cells.

    Get PDF
    BACKGROUND: TGFβ signaling has typically been associated with suppression of tumor initiation while the role it plays in metastasis is generally associated with progression of malignancy. However, we present evidence here for an anti-metastatic role of TGFβ signaling. METHODS: To test the importance of TGFβ signaling to cell survival and metastasis we compared human colon carcinoma cell lines that are either non-tumorigenic with TGFβ response (FET), or tumorigenic with TGFβ response (FETα) or tumorigenic with abrogated TGFβ response via introduction of dominant negative TGFβRII (FETα/DN) and their ability to metastasize. Metastatic competency was assessed by orthotopic transplantation. Metastatic colony formation was assessed histologically and by imaging. RESULTS: Abrogation of TGFβ signaling through introduction of a dominant negative TGFβ receptor II (TGFβRII) in non-metastatic FETα human colon cancer cells permits metastasis to distal organs, but importantly does not reduce invasive behavior at the primary site. Loss of TGFβ signaling in FETα-DN cells generated enhanced cell survival capabilities in response to cellular stress in vitro. We show that enhanced cellular survival is associated with increased AKT phosphorylation and cytoplasmic expression of inhibitor of apoptosis (IAP) family members (survivin and XIAP) that elicit a cytoprotective effect through inhibition of caspases in response to stress. To confirm that TGFβ signaling is a metastasis suppressor, we rescued TGFβ signaling in CBS metastatic colon cancer cells that had lost TGFβ receptor expression due to epigenetic repression. Restoration of TGFβ signaling resulted in the inhibition of metastatic colony formation in distal organs by these cells. These results indicate that TGFβ signaling has an important role in the suppression of metastatic potential in tumors that have already progressed to the stage of an invasive carcinoma. CONCLUSIONS: The observations presented here indicate a metastasis suppressor role for TGFβ signaling in human colon cancer cells. This raises the concern that therapies targeting inhibition of TGFβ signaling may be imprudent in some patient populations with residual TGFβ tumor suppressor activity

    Neutralizing antibodies against Epstein-Barr virus infection of B cells can protect from oral viral challenge in the rhesus macaque animal model

    Get PDF
    Epstein-Barr virus (EBV) and related lymphocryptoviruses (LCVs) from nonhuman primates are transmitted through oral secretions, penetrate the mucosal epithelium, and establish persistent infection in B cells. To determine whether neutralizing antibodies against epithelial or B cell infection could block oral transmission and persistent LCV infection, we use rhesus macaques, the most accurate animal model for EBV infection by faithfully reproducing acute and persistent infection in humans. Naive animals are infused with monoclonal antibodies neutralizing epithelial cell infection or B cell infection and then challenged orally with recombinant rhesus LCV. Our data show that high-titer B cell-neutralizing antibodies alone, but not epithelial cell-neutralizing antibodies, can provide complete protection of rhesus macaques from oral LCV challenge, but not in all hosts. Thus, neutralizing antibodies against B cell infection are important targets for EBV vaccine development, but they may not be sufficient

    Effect of Tai Chi on Vascular Function Among Patients with Peripheral Neuropathy

    Get PDF
    Foot pain due to Peripheral Neuropathy (PN) is one of the factors affecting walking ability. It has been reported that diminished vascular function contributes to a decrease in physical function in individuals with PN. Microvascular disturbances have been reported in humans with neuropathic pain. Tai Chi, a Chinese conditioning exercise, has been associated with enhanced endothelial function. However, the effect of Tai Chi training on microvascular function in patients with PN has not been studied. This study aimed to assess the effects of Tai Chi on vascular function (i.e., vascular reactivity) and functional exercise capacity among patients with PN. Thirty-seven participants (men = 21, women = 16) were randomly assigned to either Tai Chi exercise (Ex, n = 20, age: 71 ± 9.50 years) or control group (Con, n = 17, age: 75 ± 9.02 years). Exercise training consisted of 12-week progressive Tai Chi (i.e., Yang Style), offered 3 times per week, 60 minutes sessions. The Con group did not participate in any exercise activity. Before and after training, vascular function [finger tip digital thermal monitoring of vascular reactivity] and functional exercise capacity [Six-Minute Walk test (6MW)] were evaluated. The Ex group experienced a significant 25% increase in vascular reactivity index from baseline [1.93 ± 0.43 to 2.41 ± 0.47, (P \u3c 0.05)]. In addition, the 6MW test increased significantly in the Ex group by 28% [pre = 392 ± 93; post = 503 ± 105 m, (P \u3c 0.05)]. In the control group no significant changes were observed in either vascular function [1.83 ± 0.43 to 1.81 ± 0.37] or in the 6MW test [393 ± 142 to 398 ± 149 m]. Participants experienced no complications and/or falls as a result of the intervention. These findings demonstrated that in patients with PN, a 12-week progressive Tai Chi exercise program was capable of increasing not only vascular function, specifically vascular reactivity index, but also of increasing the distance covered during the 6MW test. Clearly, this study underlies the importance of Tai Chi as an effective and safe exercise intervention suitable for patients with PN

    Tai Chi Exercise on Muscle Strength and Physical Function in Peripheral Neuropathy Patients

    Get PDF
    This poster was presented at the American College of Sports Medicine\u27s (ACSM) 63rd Annual Meeting and World Congresses, Boston, MA.https://scholarworks.uttyler.edu/fac_posters/1016/thumbnail.jp

    Discovering RNA-Protein Interactome by Using Chemical Context Profiling of the RNA-Protein Interface

    Get PDF
    SummaryRNA-protein (RNP) interactions generally are required for RNA function. At least 5% of human genes code for RNA-binding proteins. Whereas many approaches can identify the RNA partners for a specific protein, finding the protein partners for a specific RNA is difficult. We present a machine-learning method that scores a protein’s binding potential for an RNA structure by utilizing the chemical context profiles of the interface from known RNP structures. Our approach is applicable even when only a single RNP structure is available. We examined 801 mammalian proteins and find that 37 (4.6%) potentially bind transfer RNA (tRNA). Most are enzymes involved in cellular processes unrelated to translation and were not known to interact with RNA. We experimentally tested six positive and three negative predictions for tRNA binding in vivo, and all nine predictions were correct. Our computational approach provides a powerful complement to experiments in discovering new RNPs
    corecore